

ACTRIS CCRES

Wind profiles from DCR and DL

CCRES Workshop Palaiseau 14-15 Nov 2022

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 871115

TRIS

CRES

Motivation

- Profiles of the horizontal wind can be obtained by ground-based remote sensing
 - Radar wind profiler (RWP)
 - Doppler wind lidar (DWL)
 - Doppler cloud radar (DCR)

> ACTRIS cloud remote sensing network can provide wind profiles (DWL, DCR)

CRFS

Wind profiles - Methodology

 3D wind vector can be derived from offzenith azimuth scans by analyzing the Doppler shift along the line of sight ("VAD scan" Velocity Azimuth Display)

Wind profiles - Methodology

- Detection needs tracers that float with the air flow
 - RWP: Clear-air fluctuations of the refractive index (Bragg scattering)
 - DCR tracers: Cloud particles, Insects
 - DWL tracers: Aerosols
 - Problems/Limitations:
 - Absence of tracers
 - Fall speed of particles (esp. rain)
 - Own movement of tracers (insects)
 - Attenuation of signal (esp. by clouds for DWL)
 - Assumption of homogeneous wind field (turbulence)
- Combination of methods (DCR+DWL) increases coverage

Combined product for wind profiles

- Doppler lidar VAD scan
 - zenith angle 15°, every 15 minutes
 - 10 degrees angular resolution, spatial resolution 30 m
- Cloud radar VAD scan
 - zenith angle 8°, every 30 minutes
 - ~5 degrees angular resolution, spatial resolution 30 m
- Combined product
 - if both methods are available, a weighted mean of both speed and direction is used depending on the uncertainty of the fit, alternatively take always wind lidar if available
 - 26 m vertical resolution, 30 min temporal resolution

Data availability 2021

Data availability per season

Example day - 10.03.2021

[RiS]

CRES

right: Cloud radar (0-12 km) Wind speed/direction

Universität zu Köln

Example day – data coverage

Example day – wind direction

Example day – wind speed boundary layer

Statistics

Mean horizontal wind speed per season in 2021

blue: winter, green: spring, red: summer, yellow: fall, black: all

Ris

CCRES

Statistics

zu Kö

Statistics

Wind roses

Application: Insect detection

- Insects are efficient targets to produce radar backscatter due to their size (1mm-1cm)
- Lidar backscatter is not affected by insects
- During warm periods (roughly T > 10°C), the Doppler radar signal is dominated by insects
- Comparison between radar and lidar allows the detection of insects
- Problem: Insect speed is not necessary the wind speed!

Insect detection - wind speed

Courtesy Katharina Weiß

Insect detection – wind direction

Wind speed difference Radar-Lidar

blue: winter green: spring red: summer yellow: fall black: all year

Summary / Further steps

- Which stations are able to provide wind profiles?
 - need a scanning DCR
 - Add also Radar Wind Profiler?
- Implementation -> SOP for wind profiles necessary
 - Which settings?
 - How to ensure synchronous scanning?
 - Which frequency of scans?
- Software:
 - Code to provide 3D wind vector from Doppler velocities incl. error estimation available in IDL
 - Merging the DL and and DCR and generating common products in Python

Thank you

