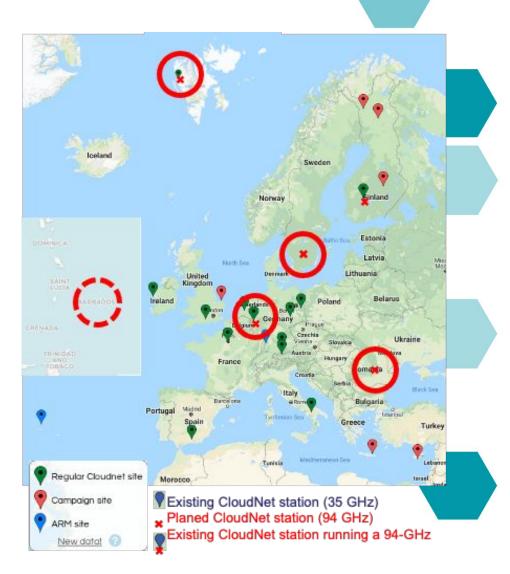


CCRES SOPs for EarthCARE Cal/Val measurements

Felipe Toledo, Lukas Pfitzenmaier, Martial Haeffelin, Ewan O'Connor CCRES Workshop, Heraklion – Oct 26th, 2023

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No $871115\,$

Overview of current and planned EarthCARE Cal/Val Activities


FRM4Radar (continuation planned)

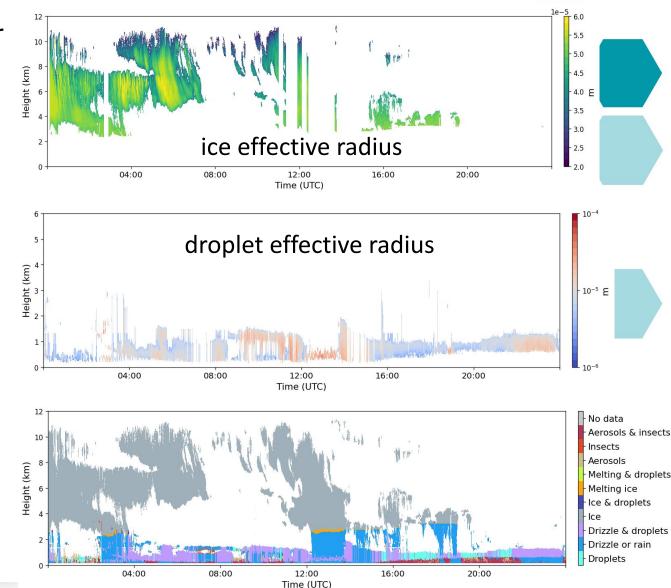
- ESA funded project to pave the way towards Fiducial Reference Measurements (FRM) standards for Radars
 - traceable reproducible quality standards for Radar measurements
- Set up a miniature network of w-band radars to close gaps in ACTRIS network

Results of the project

- GEOMS data format for ground based radars
- Ze-monitoring for ground based radars
- off-zenith antenna pointing monitoring Doppler velocity QA check and correction
- Recommendations for radar users and Chirp table definition
- Development of a CPR forward simulator based on ground based radar measurements

 \rightarrow pre launch data set generation

ATMO ACCESS (running)


Access to ACTRIS data and products for ESA and EuMetSat

- Develop products to evaluate Satellite data and cloud and aerosol product based on ACTRIS measurements and data products start with the Cal/val of ESAs
- EarthCARE mission
- planned to extend to other missions (EuMetSat)
- define new products, e.g. cloud base and top detected
- from ground interest in profiles of atmospheric variables t, humidity, wind

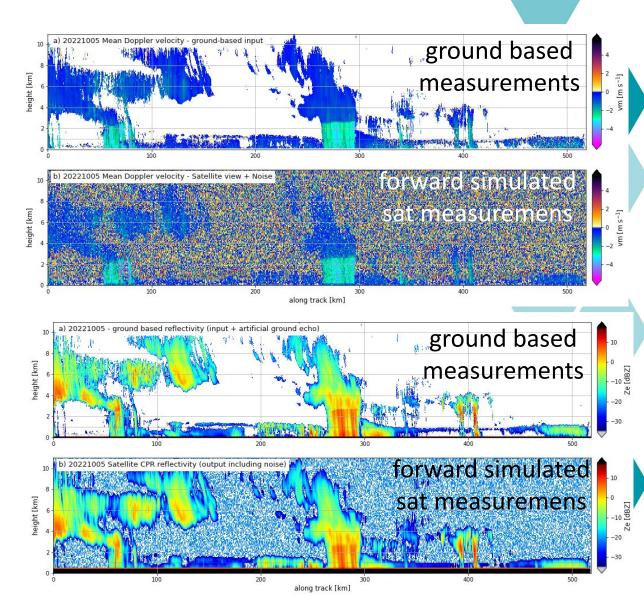
Currently:

CRES

preperation campaign EarthCARE Cal/Val

CCRES Workshop, Heraklion – Oct 26th, 2023

ACPV (running)


ESA funded project to define the best practive for Satellite Cal/Val

- best practice protocol for validation of Aerosol, Cloud and Precipitation Profiles (ACPV)
- best practice paper for Cal/Val for Satellites
- define gaps in Sat Cal/Val data sets
- plans: review and summary papers
- develop the CPR tool into a python package

CTRIS

CRES

further implementation into ESA tool box

German Initiative for Validation EarthCARE (GIVE, planned)

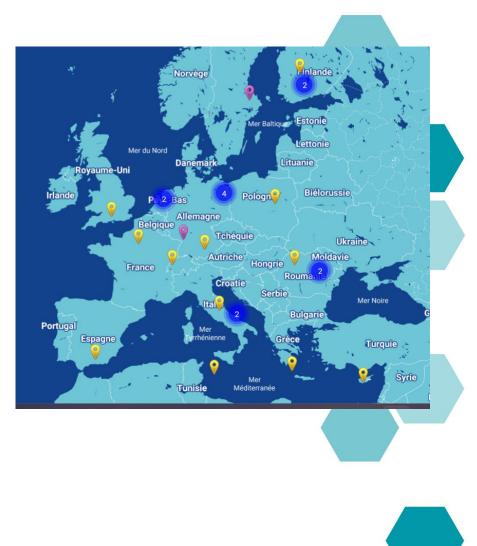
Validation of the EarthCARE satellite mission

- start 2024
- 7 German institutes
- validation of all sensors
- single sensor and product evaluation and validation
- Cal/Val of the CPR performance due to Boundary Layer Clouds
 - Detection limits of low clouds
 - Precipitation estimation in the blind zone
 - JOYCE and NyAlesund data for method development
 - method development using CPR simulations

EarthCARE cloud remote sensing CalVal using the ACTRIS network

One year Research Engineer position funded by CNES. Objectives:

- Implementation of calibration transfer algorithms between ground-based Earthcare satellite radar
- Quality control of level 1 data:
 - Closure studies between ACTRIS sites and Earthcare measurements
- Antenna pointing characterization to best compare doppler velocity from ground to Earthcare retrievals
 - Attenuation and antenna aiming corrections done using FRM4Radar tools
- Preparation of CalVal algorithms for Antarctica cloud radars

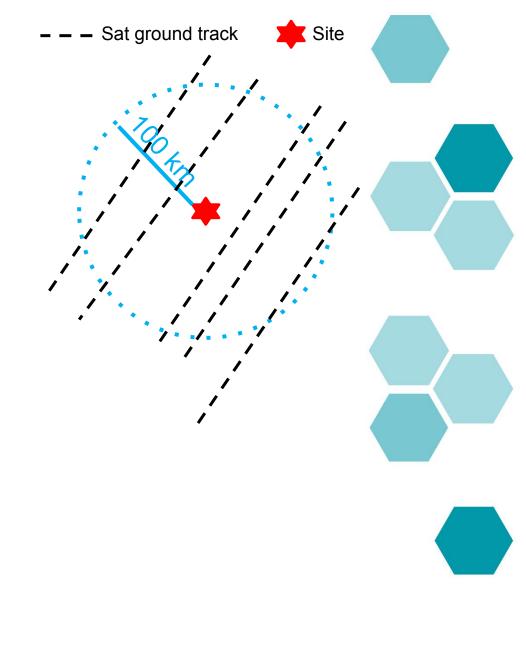


Discussion of CalVal operating procedures (SOPs)

Motivation:

EarthCARE cloud remote sensing CalVal using the ACTRIS network

- ACTRIS provides:
 - Continuous, near real time measurements
 - Cloud and aerosol products
- Large number of sites in different climate zones
- Calibration and data quality control strategy:
 - SOPs
 - Homogeneous quality control
 - Enables inter-site comparisons
- These characteristics make ACTRIS a strong infrastructure, instrumental network for satellite CalVal activities

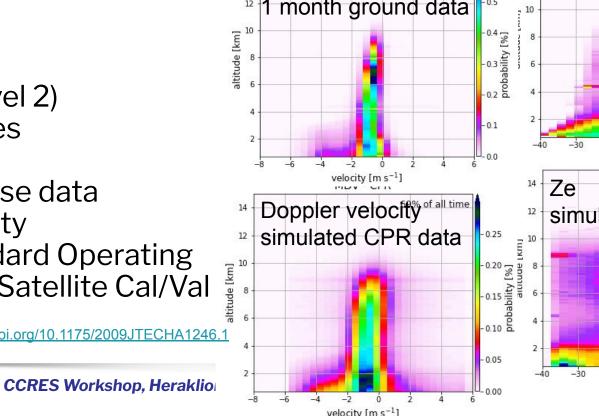


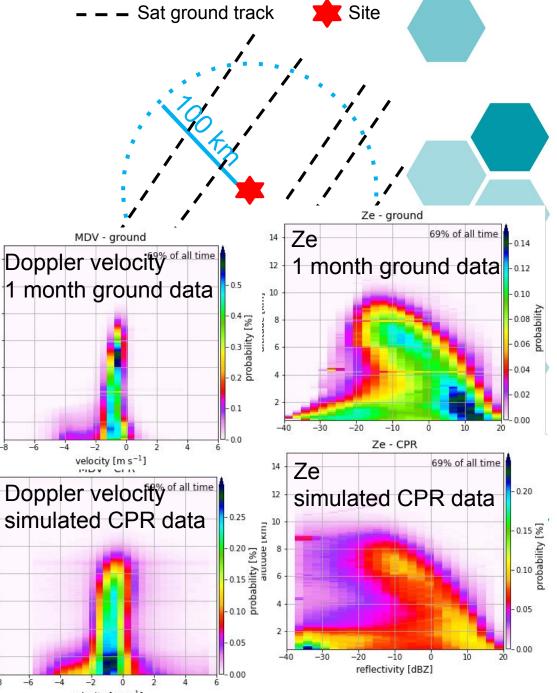
Motivation:

How ACTRIS could be used:

- Potential to deliver excellent EarthCARE Cal/Val data sets to be used for:
 - Cal/Val of single sensor data
 - Cal/Val of combined products for EarthCARE
- Statistical comparison of ground and space data sets [1]
 - Zenith measurements +/- 1.5 h around the overpass
 - Generally a big number of samples is
 - required

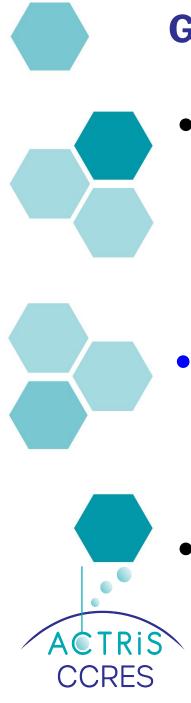
[1] Protat et al., 2009 <u>https://doi.org/10.1175/2009JTECHA1246.1</u>




Motivation:

CRFS

- Statistical comparison of ground and space data sets [1]
 - Zenith measurements +/- 1.5 h around \bigcirc the overpass
 - Generally a big number of samples is Ο required
- Statistical comparisons of:
 - Measurements (level 1) Ο
 - Retrieved products (level 2) Ο
 - Data from different sites \bigcirc
- SOPs are needed to increase data homogeneity and availability
 - Common CCRES Standard Operating
 - Procedures (SOPs) for Satellite Cal/Val


[1] Protat et al., 2009 https://doi.org/10.1175/2009JTECHA1246.1

General points to consider:

- Data quality monitoring for cloud radars:
 - Ze-monitoring (Disdrometer SOPs!!!)
- Define minimum and recommended required operational modes for each radar:
 - Range resolution and min range
 - Doppler velocity nyquist range
 - Time resolution
- For example for the following radar requirements:
 - Report each radar sensitivity at 10 km (ideal sensitivity -30 dBz, hard to achieve)
 - Zenith measurements +/- 1.5 h around the overpass
 - RPG Radars: Chirp table optimised for Cal/Val, radome changes
 - MIRA: common range resolution for all the MIRAs?
 - BASTA: Chirp table optimised for Cal/Val

General points to consider 2:

- MWR:
 - Common scanning pattern for ABL-Scans, similar vertical pointing constraints as the radar
 - Calibration regularly radome change?
 - Follow CCRES MWR SOPs
- Further SOPs for:
 - Doppler Lidar, common scanning pattern?
 - ALCs nothing to change from standard SOPs?
- Overpass time varies -> Cal/Val time period shifts
 - CCRES will provide overpass tables to the involved sites in advance

Thank you

CCRES Workshop, Heraklion – Oct 26th, 2023